Implementation of the 3D skeleton winding technology for thermoplastic structural components

68.00 €

Order
Implementation of the 3D skeleton winding technology for thermoplastic structural components
The mechanical properties of injection-molded components can be significantly improved by adding continuous fiber reinforcements. If continuous fibers are added only locally according to the occurring load paths, a component’s lightweight potential can be maximized. Depending on the component’s complexity as well as on the applied loads and their directions, topology optimization may show that the local continuous fibers should form a complex skeleton-like fiber structure.
Within the scope of this study, a novel robot-based manufacturing process - the 3D skeleton winding process (3DSW) - was designed, developed, and validated. The 3DSW process enables the manufacturing of three-dimensional reinforcement structures (fiber skeletons) to locally reinforce injection-molded components with continuous fibers. By using a component-specific winding tool attached to an industrial 6-axis robot, it is possible to automatically wind continuous fiber strands based on hybrid yarns around hard points or load introduction elements (e.g., aluminum inserts). Such hybrid fiber skeleton structures can be subsequently embedded in the final component geometry using injection molding.

More from the series "Wissenschaftliche Schriftenreihe des Fraunhofer ICT"

More books by Björn Beck

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9783839619544

Language: English

Publication date: 22.11.2023

Number of pages: 182

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.