Variational Problems with Concentration

117.69 €

Order
Variational Problems with Concentration
To start with we describe two applications of the theory to be developed in this monograph: Bernoulli's free-boundary problem and the plasma problem. Bernoulli's free-boundary problem This problem arises in electrostatics, fluid dynamics, optimal insulation, and electro chemistry. In electrostatic terms the task is to design an annular con denser consisting of a prescribed conducting surface 80. and an unknown conduc tor A such that the electric field 'Vu is constant in magnitude on the surface 8A of the second conductor (Figure 1.1). This leads to the following free-boundary problem for the electric potential u. -~u 0 in 0. \A, u 0 on 80., u 1 on 8A, 8u Q on 8A. 811 The unknowns are the free boundary 8A and the potential u. In optimal in sulation problems the domain 0. \ A represents the insulation layer. Given the exterior boundary 80. the problem is to design an insulating layer 0. \ A of given volume which minimizes the heat or current leakage from A to the environment ]R.n \ n. The heat leakage per unit time is the capacity of the set A with respect to n. Thus we seek to minimize the capacity among all sets A c 0. of equal volume.

More from the series "Progress in Nonlinear Differential Equations and Their Applications"

More books by Martin F. Bach

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9783764361365

Language: English

Publication date: 01.07.1999

Number of pages: 163

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.