Foliations on Riemannian Manifolds

106.99 €

Order
Foliations on Riemannian Manifolds
A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.

More from the series "Universitext"

More books by Philippe Tondeur

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9780387967073

Language: English

Publication date: 28.03.1988

Number of pages: 247

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.