Uncertainty Decoding for Reverberation-Robust Automatic Speech Recognition

18.00 €

Order
Uncertainty Decoding for Reverberation-Robust Automatic Speech Recognition
The major problem in distant-talking speech recognition is the corruption of speech signals by both interfering sounds and reverberation. While a range of successful techniques has been developed since the beginnings of speech recognition research to combat additive and short convolutive noise, compensating for long-term distortion caused by reverberation has not gained wide attention until recently. This thesis further develops an uncertainty decoding approach, named REverberation MOdeling for Speech recognition (REMOS), to adapt the acoustic model of a conventional Hidden Markov Model-based recognizer to reverberant environments. By incorporating a convolutive observation model, the Viterbi decoder is extended in order to implicitly provide a state-wise late reverberation estimate leading to a relaxation of the hidden Markov models' conditional independence assumption. The experimental evaluation confirms that REMOS yields strong speech recognition performance under noisy and reverberant conditions and furthermore allows for a rapid adaptation to changing acoustic conditions.

More from the series "FAU Forschungen : Reihe B"

More books by Roland Maas

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9783944057613

Language: English

Publication date: 07.07.2016

Number of pages: 191

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.