Foundations of Equational Logic Programming

37.44 €

Order
Foundations of Equational Logic Programming
Equations play a vital role in many fields of mathematics, computer science, and artificial intelligence. Therefore, many proposals have been made to integrate equational, functional, and logic programming. This book presents the foundations of equational logic programming. After generalizing logic programming by augmenting programs with a conditional equational theory, the author defines a unifying framework for logic programming, equation solving, universal unification, and term rewriting. Within this framework many known results are developed. In particular, a presentation of the least model and the fixpoint semantics of equational logic programs is followed by a rigorous proof of the soundness and the strong completeness of various proof techniques: SLDE-resolution, where a universal unification procedure replaces the traditional unification algorithm; linear paramodulation and special forms of it such as rewriting and narrowing; complete sets of transformations for conditional equational theories; and lazy resolution combined with any complete set of inference rules for conditional equational theories.

More from the series "Lecture Notes in Artificial Intelligence"

More from the series "Lecture Notes in Computer Science"

More books by Steffen Hölldobler

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9783540515333

Language: English

Publication date: 11.10.1989

Number of pages: 256

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.