Direkt inverse Materialparameteridentifikation unter Verwendung neuronaler Netze und deren Potential für den Produktentwicklungsprozess

84.00 €

Order
Direkt inverse Materialparameteridentifikation unter Verwendung neuronaler Netze und deren Potential für den Produktentwicklungsprozess
Steigende Produktanforderungen im Maschinenbau und das stetige Bestreben, die Time-to-Market weiter zu reduzieren, erfordern hochpräzise sowie zuverlässige Finite-Elemente-Simulationen, um entwickelte Komponenten vor der Fertigung und Produktion bewerten und somit korrekte Designentscheidungen treffen zu können. Dies erfordert die Berücksichtigung des spezifischen Werkstoffverhaltens mit geeigneten kalibrierten Materialmodellen. Die notwendige Parameterkalibrierung wird im Hinblick auf die wachsende Vielfalt der verfügbaren Materialien zunehmend anspruchsvoller. Neben der klassischen, auf iterativer Optimierung basierenden Methode der Parameteridentifikation, stellt die vergleichsweise neuartige direkt inverse Methode, bei welcher Verfahren des maschinellen Lernens angewandt werden, eine vielversprechende effiziente Alternative dar. Das Ziel dieser Arbeit besteht in der Entwicklung und Untersuchung eines Frameworks zur direkt inversen Materialparameteridentifikation für den effizienten Einsatz numerischer Simulationen entlang des Produktentwicklungsprozesses. Hierbei liegt der Schwerpunkt auf der Erarbeitung und Implementierung geeigneter Strategien und Methoden im Umfeld des maschinellen Lernens bzw. primär neuronaler Netzwerke sowie deren qualitative und quantitative Eignungsbewertung durch vergleichende Studien bspw. hinsichtlich unterschiedlicher Netzwerkarten und -architekturen. Dabei werden problemspezifische Berechnungs- und Optimierungsstrategien sowohl adaptiert als auch eigene Ansätze erarbeitet und weiterentwickelt. Zudem werden unterschiedliche Methoden zur MPI qualitativ miteinander verglichen sowie Potentiale abgeleitet, die aus dem Einsatz der direkt inversen Methode innerhalb des PEP resultieren. Abschließend erfolgt in einem Entwicklungsszenario die Anwendung des Frameworks zur Ermittlung geeigneter Materialparameter unterschiedlicher thermoplastischer Polymere für die Struktursimulation und die anschließende Materialauswahl.

More from the series "Produktentwicklung"

More books by Paul Meißner

Log in to get access to this book and to automatically save your books and your progress.

Purchase this book or upgrade to dav Pro to read this book.

When you buy this book, you can access it regardless of your plan. You can also download the book file and read it in another app or on an Ebook reader.

80 % of the price goes directly to the author.

ISBN: 9783843953894

Language: German

Publication date: 09.12.2023

Our shipping costs are a flat rate of €2.50, regardless of the order.
Currently, we only ship within Germany.

Shipping is free for PocketLib Pro users.

An error occured. Please check your internet connection or try it again later.